Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619073

RESUMEN

BACKGROUND: High internal phase emulsions (HIPEs) are unique emulsion systems that transform liquid oil into solid-like fats, thus avoiding the use of saturated fat and leading to a healthier and more sustainable food system for consumers. HIPEs with oil volume fraction (ϕ) of 75-85% were fabricated with mung bean protein isolate (MPI) under different pH shift treatments at 1.0% concentration through the one-step method. In the present study, we investigated the physical properties, microstructures, processing properties, storage stability and rheological properties of HIPEs. RESULTS: The results suggested that the properties of MPI under different pH shift treatments were improved to different degrees, stabilizing HIPEs (ϕ = 75-85%) with various processability to meet food processing needs. Under alkali shift treatment conditions, the particle size of MPI was significantly reduced with better solubility. Moreover, the exposure of hydrophobic groups increased the surface hydrophobicity of MPI, awarding MPI better emulsifying properties, which could stabilize the HIPEs with higher oil phase fraction. In addition, the MPI under pH 12 shift treatment (MPI-12) had the best oil-carrying ability to form the stable HIPEs with oil volume fraction (ϕ) up to 85%, which was the highest oil phase in preparing the HIPEs using plant protein solely at a low concentration under neutral conditions. CONCLUSION: A series of stable HIPEs with different processing properties was simply and feasibly fabricated and these are of great potential in applying edible HIPEs. © 2024 Society of Chemical Industry.

2.
Food Res Int ; 164: 112306, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36737901

RESUMEN

For the limitation of poor solubility and interfacial adsorption capacity of rice protein isolates (RPI), in this work the effects of pH-shifting treatments on the emulsifying properties of RPI were investigated. The results showed that the particle size of the emulsion stabilized by alkaline pH-shifting treated RPI was smaller than that stabilized by acid pH-shifting treated RPI. In addition, the RPI-10 stabilized emulsion showed a more uniform particle size distribution, which was explained by its high emulsifying activity and stability (EAI: 49.5 m2/g, ESI: 59.5 min). The interface rheology results showed that the alkaline pH-shifting treatment could promote the protein rearrangement and subsequently formed interface film with higher rate of protein penetration and rearrangement. The quantitative analysis of adsorbed proteins in the RPI-10 stabilized emulsion showed that glutelin-type isoforms as major proteins in RPI were increased at the oil-water interface for their balanced distribution of the hydrophilic and hydrophobic amino acid group. These quantitative and interfacial rheology analysis could improve deep understanding of the interfacial properties of pH-shifting treated RPI, and promote the development of application in grain protein stabilized emulsion.


Asunto(s)
Oryza , Emulsiones/química , Proteínas , Adsorción , Concentración de Iones de Hidrógeno
3.
Food Chem ; 407: 135136, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36502729

RESUMEN

Chickpea protein (CP) is an exceptional nutrient-dense pulse protein prevailing in the development of plant-based foods. However, its relatively low solubility, compared to other legume proteins, hinders the practical uses of CP in food matrix. To resolve this problem, pea protein (PP), another popular pulse protein, was co-assembled with CP to form a binary complex during the alkaline pH-shifting process. Results indicated that the complexed CP exhibited significantly increased solubility to that of the pristine protein (more than 50%), whose aqueous stability was also enhanced against different environmental stresses (pH, salt, heat/frozen treatment, and centrifugation). Structural and morphology analysis confirmed the interplay between unfolded CP and PP during pH shifting, which enabled their resistance to acid-induced structural over-folding. Our experiments that induce the co-assembling of two pulse proteins provide a novel routine and scientific basis for tailoring CP functionalities, as well as the formulation of pulse protein-based products.


Asunto(s)
Cicer , Fabaceae , Cicer/química , Proteínas en la Dieta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA